Maschinelles Lernen in der Signalverarbeitung
Im Bereich des maschinellen Lernens, insbesondere des Deep Learning, liegt der Schwerpunkt sowohl auf der Grundlagenforschung als auch auf der angewandten Forschung. Algorithmen des maschinellen Lernens werden für die Erkennung von Anomalien, die Schätzung von Unsicherheiten, die Erkennung von Unregelmäßigkeiten, das Lernen mit wenigen Daten (few-shot learning), das Lernen mit verrauschten Labels sowie für hardwarenahe Probleme wie die Modellkomprimierung und den effizienten Aufbau neuronaler Netzarchitekturen entwickelt. Die Anwendungen umfassen automatisiertes Fahren, Computer Vision, medizinische Bildanalyse und Signalverarbeitung. Beispiele für praktische Probleme sind die Vorhersage von Trajektorien und Bewegungen, die Lokalisierung sowie die Segmentierung von Bildern und Punktwolken.