• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Lehrstuhl für Multimediakommunikation und Signalverarbeitung
  • FAUZur zentralen FAU Website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Elektrotechnik-Elektronik-Informationstechnik
Suche öffnen
  • en
  • EEI
  • Mein Campus
  • UnivIS
  • StudOn
  • CRIS
  • GitLab
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Elektrotechnik-Elektronik-Informationstechnik

Lehrstuhl für Multimediakommunikation und Signalverarbeitung

Menu Menu schließen
  • Lehrstuhl
    • Personen
    • Ausrichtung
    • Kompetenzen
    • Kooperationen
    • Ausstattung
    • EMSig
    • Kontakt
    Lehrstuhl
  • Forschung
    • Arbeitsgebiete
    • Veröffentlichungen
    • Patente
    • Downloads
    Forschung
  • Studium und Lehre
    • Lehrveranstaltungen
    • Abschlussarbeiten
    • FAQ
    Studium und Lehre
  • Aktuelles
    • Lehrstuhlnews
    • Seminarvorträge
    • Auszeichnungen
    • Stellenangebote
    • Veranstaltungen
    Aktuelles
  1. Startseite
  2. Forschung
  3. Downloads
  4. HAHSI (Hexagonal Array for HyperSpectral Imaging)

HAHSI (Hexagonal Array for HyperSpectral Imaging)

Bereichsnavigation: Forschung
  • Arbeitsgebiete
  • Veröffentlichungen
  • Patente
  • Downloads
    • Decoding-Energy-Rate-Distortion Optimization (DERDO)
    • Fish Eye Dataset
    • HAHSI (Hexagonal Array for HyperSpectral Imaging)
    • HyViD (Synthetic Hyperspectral Array Video Database)
    • Rekonstruktion von Hochkontrastvideos mittels Mehrkamerasystemen
    • Schüßler, Digitale Signalverarbeitung 1 und 2
    • SMV: Sequences with Motion Vectors
    • Superresolution

HAHSI (Hexagonal Array for HyperSpectral Imaging)

Overview

Retrieving the reflectance spectrum from objects is an essential task for many classification and detection problems, since many materials and processes have a unique spectral behavior. In many cases, it is highly desirable to capture hyperspectral images due to the high spectral flexibility. Often, it is even necessary to capture hyperspectral videos or at least to be able to record a hyperspectral image at once, also called snapshot hyperspectral imaging, to avoid spectral smearing. For this task, a high-resolution snapshot hyperspectral camera array using a hexagonal shape is introduced. The Hexagonal Array for HyperSpectral Imaging (HAHSI) uses off-the-shelf hardware, which enables high flexibility regarding employed cameras, lenses, and filters. Hence, the spectral range can be easily varied by mounting a different set of filters. Moreover, the concept of using off-the-shelf hardware enables low prices in comparison to other approaches with highly specialized hardware. Since classical industrial cameras are used in this hyperspectral camera array, the spatial and temporal resolution is very high, while recording 37 hyperspectral channels in the range from 400 to 760 nm in 10 nm steps. As the cameras are at different spatial positions, a registration process is required for near-field imaging, which maps the peripheral camera views to the center view. This combination is used to provide a real-world high-resolution hyperspectral video database with ten scenes.


Database

The HAHSI database provides ten scenes recorded from 400 nm to 760 nm in 10 nm steps, resulting in 37 hyperspectral channels. The following table provides details about these scenes:

Name Resolution Frame Rate Frames Exposure Near-field Far-field
Cars 1600 x 1100 30 FPS 31 5 ms Y
Cola Mix 600 x 400 170 FPS 3351 5 ms Y
Lab Pan 1600 x 1200 30 FPS 200 5 ms Y
Tree 800 x 1300 50 FPS 925 5 ms Y
Outdoor Pan 1 1124 x 924 23 FPS 233 10 ms Y
Outdoor Pan 2 1124 x 924 23 FPS 286 10 ms Y
Outdoor Pan 3 1124 x 924 23 FPS 316 10 ms Y
Surveillance 1124 x 924 23 FPS 1000 4 ms Y
Run 1132 x 928 22 FPS 380 1 ms Y
Campus 1132 x 928 22 FPS 900 1 ms Y

 

Cars Cola Mix Lab Pan Tree Outdoor Pan 1 Outdoor Pan 2 Outdoor Pan 3 Surveillance Run Campus

Source Code

The GitHub repository provides a hyperspectral video viewer, which depicts the hyperspectral video as well as the corresponding RGB video rendered from the hyperspectral channels. The GitHub repository of another paper provides the source code required for registration.


Publication

If you use the dataset or source code for your research, you should cite the following paper:

Frank Sippel, Jürgen Seiler, André Kaup
High-resolution hyperspectral video imaging using a hexagonal camera array
Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 41, num. 12, Dec 2024, pp. 2303-2315

DOI: 10.1364/JOSAA.536572
arxiv: https://arxiv.org/abs/2407.09038



License

The database and source are licensed using the BSD-3-Clause license.


Contact

lms-datasets@fau.de

Lehrstuhl für Multimediakommunikation und Signalverarbeitung
Cauerstr. 7
91058 Erlangen
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Nach oben